3,056 research outputs found

    High-temperature, high-pressure spherical segment valve Patent

    Get PDF
    High-temperature, high-pressure spherical segment valv

    High-temperature, high-pressure spherical segment valve provides quick opening

    Get PDF
    A hollow spherical segment valve with an eccentric permits non-rubbing closure and provides a means for gas-cooling the seal. The design allows quick opening at high temperatures and discharge pressures

    Delayed neutron assay to test sorbers for uranium-from-seawater applications

    Get PDF
    Delayed Fission Neutron (DFN) assay has been applied to the measurement of uranium content in sorbers exposed to natural seawater for the purpose of evaluating advanced ion exchange resins. DFN assay was found to be particularly suitable for such testing because it is selective, nondestructive, yields quantitative results in the submicrogram range, and requires relatively simple sample preparation. Surplus components for a DFN system were obtained from the Lawrence Livermore National Laboratory, modified, re-assembled, and calibrated for use with M.I.T. irradiation facilities, following which procedures were developed, evaluated and applied to the experiments at hand.Four experimental ion exchange resins developed by the Rohm and Haas (R&H) Company specifically for uraniumfrom- seawater applications were evaluated, together with hydrous titanium oxide (HTO), the leading inorganic sorber for this purpose. Two types of tests using natural seawater were employed: batch loading experiments (paralleling similar tests done by R&H), and fixed-bed column loading experiments using a test facility at the Woods Hole Oceanographic Institute (WHOI). While some qualitatively consistent trends were evident among the various experiments, important quantitative inconsistencies were noted. The WHOI tests most closely approximated true in-service conditions; hence, more importance is assigned to these results.The MIT/WHOI tests confirmed 1.5 mm HTO particle bed uptake of approximately 300 ppm U for a 30 day exposure, in good agreement with the results reported by other laboratories, worldwide. An anion exchange resin employing an amidoxime functional group also achieved this level of performance, and, in addition, exhibited considerably superior mechanical properties. Moreover, the resin performance is expected to improve when its properties are optimized for the present application.U.S. Dept. of Energy

    An Application of Kerr Blackhole Fly-Wheel Model to Statistical Properties of QSOs/AGNs

    Get PDF
    The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr blackholes (BHs), so-called the fly-wheel (rotation driven) model. The fly-wheel engine of the BH-accretion disk system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z102z \sim 10^2 and obtains nearly maximum but finite rotation energy (\sim extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through an magnetohydrodynamic process. This model naturally leads finite lifetime of AGN activity. Nitta et al. (1991) clarified individual evolution of Kerr BH fly-wheel engine which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimension-less small parameter. We impose a statistical model for the initial mass function (IMF) of ensemble of BHs by the Press-Schechter formalism. By the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.Comment: 12 pages, 7 figures Fig.7 has been replace

    Delayed neutron assay to test sorbers for uranium-from-seawater applications

    Get PDF
    Includes bibliographical references (pages 106-107)Final Report of the Uranium from Seawater Project ; FY 1981U.S. Dept. of Energy 80-499-

    Self-similar solution of fast magnetic reconnection: Semi-analytic study of inflow region

    Full text link
    An evolutionary process of the fast magnetic reconnection in ``free space'' which is free from any influence of outer circumstance has been studied semi-analytically, and a self-similarly expanding solution has been obtained. The semi-analytic solution is consistent with the results of our numerical simulations performed in our previous paper (see Nitta et al. 2001). This semi-analytic study confirms the existence of self-similar growth. On the other hand, the numerical study by time dependent computer simulation clarifies the stability of the self-similar growth with respect to any MHD mode. These results confirm the stable self-similar evolution of the fast magnetic reconnection system.Comment: 15 pages, 7 figure

    Magnetic Reynolds number dependence of reconnection rate and flow structure of the self-similar evolution model of fast magnetic reconnection

    Full text link
    This paper investigates Magnetic Reynolds number dependence of the ``self-similar evolution model'' (Nitta et al. 2001) of fast magnetic reconnection. I focused my attention on the flow structure inside and around the reconnection outflow, which is essential to determine the entire reconnection system (Nitta et al. 2002). The outflow is consist of several regions divided by discontinuities, e.g., shocks, and it can be treated by a shock-tube approximation (Nitta 2004). By solving the junction conditions (e.g., Rankine-Hugoniot condition), the structure of the reconnection outflow is obtained. Magnetic reconnection in most astrophysical problems is characterized by a huge dynamic range of its expansion (sim107sim 10^7 for typical solar flares) in a free space which is free from any influence of external circumstances. Such evolution results in a spontaneous self-similar expansion which is controlled by two intrinsic parameters: the plasma-betabeta and the magnetic Reynolds number. The plasma-betabeta dependence had been investigated in our previous paper. This paper newly clarifies the relation between the reconnection rate and the inflow structure just outside the Petschek-like slow shock: As the magnetic Reynolds number increases, strongly converging inflow toward the Petschek-like slow shock forms, and it significantly reduces the reconnection rate.Comment: 16 pages. to appear in ApJ (2006 Jan. 20 issue

    Multi-wavelength Diagnostics of the Precursor and Main phases of an M1.8 Flare on 2011 April 22

    Get PDF
    We study the temporal, spatial and spectral evolution of the M1.8 flare, which occurred in NOAA AR 11195 (S17E31) on 22 April 2011, and explore the underlying physical processes during the precursors and their relation to the main phase. The study of the source morphology using the composite images in 131 {\deg}A wavelength observed by the SDO/AIA and 6-14 keV revealed a multiloop system that destabilized systematically during the precursor and main phases. In contrast, HXR emission (20-50 keV) was absent during the precursor phase, appearing only from the onset of the impulsive phase in the form of foot-points of emitting loop/s. This study has also revealed the heated loop-top prior to the loop emission, although no accompanying foot-point sources were observed during the precursor phase. We estimate the flare plasma parameters viz. T, EM, power-law index, and photon turn-over energy by forward fitting RHESSI spectral observations. The energy released in the precursor phase was thermal and constituted ~1 per cent of the total energy released during the flare. The study of morphological evolution of the filament in conjunction with synthesized T and EM maps has been carried out which reveals (a) Partial filament eruption prior to the onset of the precursor emission, (b) Heated dense plasma over the polarity inversion line and in the vicinity of the slowly rising filament during the precursor phase. Based on the implications from multi-wavelength observations, we propose a scheme to unify the energy release during the precursor and main phase emissions in which, the precursor phase emission has been originated via conduction front formed due to the partial filament eruption. Next, the heated leftover S-shaped filament has undergone slow rise and heating due to magnetic reconnection and finally erupted to produce emission during the impulsive and gradual phases.Comment: 16 Pages, 11 Figures, Accepted for Publication in MNRAS Main Journa
    corecore